

Journal of Alloys and Compounds 446-447 (2007) 363-367

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Phase evolution of Li₂ND, LiD and LiND₂ in hydriding/dehydriding of Li₃N

Wen-Ming Chien^a, Joshua Lamb^a, Dhanesh Chandra^{a,*}, Ashfia Huq^b, James Richardson Jr.^c, Evan Maxey^c

^a Metallurgical Materials Engineering, MS 388, University of Nevada, Reno, NV 89557, United States
 ^b Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
 ^c Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439, United States

Received 17 February 2007; received in revised form 22 February 2007; accepted 22 February 2007 Available online 4 March 2007

Abstract

Neutron and synchrotron studies have been performed on in situ hydriding of Li₃N. Commercial Li₃N is composed of α phase (~70 wt.%) and β phase (~30 wt.%). We have performed experiments to convert $\beta \rightarrow \alpha$, and studied in situ deuteration using neutron diffraction experiments. We found concurrent phase evolution of Li₂ND, LiD, and LiND₂. Mass percentages of the phases evolved as a function of time and temperature have been quantified using General Structure Analysis System (GSAS) refinement of the neutron diffraction data. The problem of formation of the stable LiD is discussed in light of decreasing of the amount of LiD phase when the temperature is increased from 200 to 320 °C during dehydriding, and in addition the concentration of Li₂ND phase increased at this temperature. Lattice parameters, volume changes, phase evolutions in wt.% as a function of temperature and time are presented.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Li2NH; Li3N; LiNH2; Neutron diffraction; Phase analysis

1. Introduction

Several studies have indicated complex alkali metal based hydrides, such as, lithium amide (LiNH₂) and lithium imide (Li₂NH) are particularly attractive as potential candidates for hydrogen storage due to their relatively high theoretical gravimetric hydrogen density (e.g., LiNH₂ alone has 6.5 wt.% hydrogen). Chen et al. [1] pioneered the progressive hydrogenation of lithium nitride, Li₃N, which leads to the absorption of the theoretical 11.5 wt.% hydrogen by the reaction in Eq. (1):

$$Li_3N + 2H_2 \Leftrightarrow Li_2NH + LiH + H_2 \Leftrightarrow LiNH_2 + 2LiH$$

$$(\text{total capacity}: 11.5 \text{ wt.}\% \text{ H}_2) \tag{1}$$

If only imides are considered, then the following Eq. (2) is valid.

 $Li_2NH + H_2 \Leftrightarrow LiNH_2 + LiH$

(reversible at ~ 1 bar at 285 °C, 6.5 wt.% H₂, ΔH

$$= 45 \,\mathrm{kJ/mol}) \tag{2}$$

To increase the equilibrium pressure, Luo [2] showed that Mg additions increase the plateau pressures, Eq. (3).

 $2\text{LiNH}_2 + \text{MgH}_2 \Leftrightarrow \text{Li}_2\text{Mg(NH)}_2$ (32 bar at 200 °C) (3)

Chen et al. [1] also suggested that full reversal to Li_3N may be possible at higher temperatures (>400 °C) as per Eq. (4), which is also confounded with competing side-reactions leading to ammonia formation as in Eqs. (5) and (6) [3].

 $Li_2NH + LiH \Leftrightarrow Li_3N + H_2$

(not easily reversible, ~ 0.01 bar at 255 °C, 5 wt.% H₂, ΔH

$$= 165 \, \text{kJ/mol}$$
 (4)

 $2\text{LiNH}_2 \Leftrightarrow \text{Li}_2\text{NH} + \text{NH}_3$

=

$$(3.7 \text{ wt.}\% \text{ NH}_3, \ \Delta H = +84 \text{ kJ/mol NH}_3) \tag{5}$$

 $NH_3 + LiH \rightarrow 2LiNH_2 + H_2$ $(5.8 \text{ wt.}\% \text{ H}_2, \ \Delta H = -39 \text{ kJ/mol NH}_3) \tag{6}$

^{*} Corresponding author. Tel.: +1 775 784 4960; fax: +1 775 784 4316. *E-mail address:* dchandra@unr.edu (D. Chandra).

^{0925-8388/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2007.02.149

Fig. 1. Schematic of the in situ deuteriding/de-deuteriding experimental setup.

However, these hydrogenation/dehydrogenation reactions have not been shown to be reversible or to have adequate hydrogen release kinetics at moderate temperatures.

Issues with ammonia evolution were reported by Ichikawa et al. [4] who indicated that the NH₃ release is controllable; the NH₃ evolved during a first-order reaction, then is consumed in a secondary reaction shown in Eq. (6); the kinetics are very fast for this reaction. The lithium-based complex hydrides have great potential as materials for fuel cell, on-board vehicular, and other applications [5–7].

Commercial Li₃N powder is a two-phase mixture of α -Li₃N and β -Li₃N. The structure of the α phase is hexagonal with *P6/mmm* space group with lattice constants a = 3.648(1) Å and c = 3.875(1) Å (Z=1) [8,9]. The β phase is a high-pressure phase, and is a hexagonal structure with a = 3.552(1) Å and c = 6.311(3) Å (P6₃/mmc, Z=2) [10]. The low-temperature structural behavior studies of the α -Li₃N and β -Li₃N phases have been performed by Huq et al. [11] and Chien et al. [12] using neutron powder diffraction (NPD). The structure of Li₂NH was reported as cubic (*Fm*-3*m*) with a = 5.0742(2) Å by Noritake et al. [13] using synchrotron X-ray diffraction (XRD), and by Ohoyama et al. [14] using NPD. Recently, Balogh et al. [15] reported the crystal structure and phase transformation of deuterated lithium imide (Li₂ND) using both NPD and XRD. The crystal structure of LiNH₂ was determined by Juza and Opp [16], and re-determined by Jacobs and Juza (single-crystal XRD) [17], Miwa et al. [18], and Yang et al. by NPD [19] as tetragonal structure with a = 5.03442 and c = 10.25558 Å (space group I-4).

Li-based hydrides show a high capacity for reversible hydrogen storage. However, understanding phase formation behaviors during temperature change is also important for the hydrogen storage application. In this study, we report results of NPD studies, such as phase evolution of the amide, imide, LiD, during hydrogenation of Li₃N. Also the effect of temperature on deuteriding and de-deuteriding of Li₃N.

2. Experimental

A lithium nitride sample (Li₃N, 80 mesh) was obtained from Sigma–Aldrich in the form of a powder. Time-of-flight (TOF) NPD data was collected for the Li₃N sample using the General Purpose Powder Diffractometer (GPPD) at the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory. Diffraction data were collected on all detector banks. The sample was loaded in the Inconel alloy pressure sample holder in a helium-filled re-circulating glove-box. The in situ deuteriding/de-deuteriding experimental setup is shown in Fig. 1. Deuterium gas was supplied at 2 bar during the deuteriding experiment. Rietveld refinements were performed using the General Structure Analysis System (GSAS) computer software [20,21]. To de-deuteride, for the results shown in Fig. 3, we used active evacuation via a Varian V-70 turbo pump system, backed up with a dry mechanical pump. The NPD data were acquired on two banks of detectors at IPNS (Argonne National Laboratories), every 15 min. The phases were identified first by standard search methods, and then the compositional changes were tracked using the GSAS program.

3. Results and discussions

In this study, we performed both diffraction studies on the pre-treated α phase Li₃N sample as well as $\alpha + \beta$ Li₃N commercial powders. At room temperature, the NPD data show that the commercial Li₃N sample contains two different phases: 65 wt.% α -Li₃N phase and 35 wt.% β -Li₃N phase. Isothermal in situ deuteriding NPD data was taken at 200 °C at 2 bar D₂ pressure. Isothermal evolution (wt.%) of different phases as a function of time is shown in Fig. 2. Initially, as the temperature was equilibrated to 200 °C, the only change observed in the diffraction pattern was β -Li₃N transforming to α -Li₃N phase (region 1); the α -Li₃N phase increases from 65 to 79 wt.% with a corresponding decrease in the mass of the β phase. In region 2, the hydride phases Li₂ND and LiD begin to appear. Concurrently, there is a decrease in the mass of the α -Li₃N phase, suggesting that the α -Li₃N is converting to Li₂ND and LiD. The β -Li₃N phase concentration continues to decrease in region 2. The evolution of the amide LiND₂ phase was observed after \sim 145 min, in region 3. It can be noted that in region 3, concentrations of LiND₂ and LiD are greater than that of Li₂ND,

Fig. 2. Isothermal in situ deuteriding NPD results (at 200 °C and 2 bar D₂ pressure of the commercial Li₃N sample (α -Li₃N and β -Li₃N) show the different amounts of phase formation as a function of time.

indicating either direct formation of LiND₂ from Li₃N or rapid transformation of Li₂ND \rightarrow LiND₂ during these multiple concurrent transformations. It does appear that, as the amount of α -Li₃N phase decreases, there is a corresponding increase in the amount of LiND₂ formed. The reactions in regions 1–3 at 200 °C are summarized in Table 1.

Another in situ deuteriding/de-deuteriding experiment was performed by using the pre-treated Li₃N sample which contained only the α -Li₃N phase; the β -Li₃N to α -Li₃N transformation occurs readily above 250 °C. The results are presented

 Table 1

 Summary of isothermal transformations in each region at 200 °C

Region 1	Region 2	Region 3
Up to ~100 min	100–145 min	145-650 min
β -Li ₃ N $\rightarrow \alpha$ -Li ₃ N	β -Li ₃ N $\rightarrow \alpha$ -Li ₃ N	β -Li ₃ N $\rightarrow \alpha$ -Li ₃ N
	$\alpha\text{-}Li_3N \rightarrow Li_2ND + LiD$	$\alpha\text{-}Li_3N \rightarrow Li_2ND + LiD$
		$Li_2ND \rightarrow LiND_2$ (rapid)

for the deuteration and de-deuteration in Fig. 3. Deuteriding was performed at room temperature, 150, 200, and 250 °C. As expected, the α -Li₃N phase is stable up to 150 °C. As temperature was increased from 150 to 200° C, (from ~ 19 to 30 h) the hydride phases, Li₂ND, LiD, and LiND₂ form simultaneously under these conditions (2 bar of deuterium pressure). Also note that as the temperature is raised there is time lag to equilibrate. The amount of Li₂ND phase increases to \sim 19 wt.%, the LiD phase to ~ 21 wt.%, and the LiND₂ phase ~ 14 wt.% after isothermally holding temperature at 200 °C for 9h. From Fig. 3, it can seen that the α -Li₃N phase concentration decreases rapidly in the 200 and 250 °C regions at the deuteriding region, and only ~ 10 wt.% is residual after 12 h of isothermal holding at 200 °C. In the 250 °C deuteriding region, initially, the amount of the Li₂ND phase formed increases rapidly, and then decreases due to the formation of the LiND₂ and LiD phases. It can also be noted that the formation of LiD phase continues to increase during deuteration between 200 and 250 °C, while the Li₂ND decreases and LiND₂ increases with a possible saturation at 40 h; with 25 wt.% of Li_2ND , 37 wt.% LiD, and 28 wt.% LiND₂. In the 200 °C region, there is a tendency to form Li₂ND and LiD phases in preference to LiND₂, similar to what we observed in Fig. 2. The total amount of hydrogen storage is calculated to be 7.26 wt.% at the end of 44 h.

The neutron data indicate a total storage of 7.26 wt.% of hydrogen after 44 h at 255 °C. Our recent work at 255 °C showed that at 2 bar, the material has an effective equilibrium capacity of 8.7 wt.%. Four grams of material was used in the NPD studies, indicating that 0.29 g of hydrogen was stored, or 83% of the material's potential capacity. The deuteration wt.% capacity of the materials was converted to hydrogen capacity.

The overall hydrogen absorption reaction of Li_3N can be obtained from Eq. (1) as:

 $Li_3N + 2H_2 \leftrightarrow LiNH_2 + 2LiH$

The Gibbs free energy of the ongoing reaction in our case at a hydrogen pressure of 2 bar, can be obtained using the following

Fig. 3. The phase evolutions of the in situ deuteriding and de-deuteriding of the pure α -Li₃N sample as a function of temperature and time.

equation:

$$\Delta G = \Delta G^{\circ} + RT \ln K_{P=2 \text{ bar}}$$

= $-RT \ln K_{P \text{ at } x=7.26 \text{ wt.}\%} + RT \ln K_{P=2 \text{ bar}}$ (7)

As Li_3N , $LiNH_2$, and LiH are all solid species, their activities are assumed to be equal to 1. The equilibrium constant for this reaction is estimated to be:

$$K_{\rm P} = \frac{a_{\rm LiNH_2} a_{\rm LiH}^2}{a_{\rm Li_3N} p_{\rm H_2}^2} = \frac{1}{p_{\rm H_2}^2},$$

and if the imposed pressure is 2 bar then

$$\Delta G = -RT \ln\left(\frac{1}{p_{\rm H_2}^2}\right)_{p_{\rm eq}} + RT \ln\left(\frac{1}{p_{\rm H_2}^2}\right)_{p=2\,\rm bar} \tag{8}$$

Our neutron data showed ~7.26 wt.% hydrogen (Fig. 3) at 250 °C, whereas our equilibrium absorption isotherms, using Li₃N as starting material taken at 255 °C, showed that at 2 bar hydrogen pressure there should be ~8.7 wt.% hydrogen stored (Fig. 4). Thus the absorption NPD and isotherm show a discrepancy of 1.44 wt.% hydrogen; although there is a small difference in temperature at which these two data sets were taken. From our isotherm (Fig. 4) we can obtain the absorption equilibrium pressure (P_{eq}) of ~0.8 bar at 7.26 wt.% hydrogen. This yields $\Delta G_{Eq. (8)} = -8.0$ kJ/mol for reaction (1), indicating that the reac-

Fig. 4. Pressure-composition hydrogen absorption isotherm of Li₃N at 255 °C.

tion would continue to absorb the additional 1.4 wt.% hydrogen if given more time. However, we started to evacuate the system prematurely before that remaining 1.4 wt.% hydrogen was absorbed in the sample.

De-deuteriding was started after 44 h at 250 °C. In this 250 °C region, the amount of the Li₂ND phase increases rapidly to

Fig. 5. The unit-cell volumes of (a) α -Li₃N, (b) LiD and (c) LiND₂ phases vs. temperature.

50 wt.% with a corresponding decrease of LiND₂ phase to 10 wt.% in 5 h. There is a much less pronounced decrease in the amount of LiD phase at this temperature; only 5 wt.% decrease observed. After 48 h, the temperature was decreased to 200 °C during de-deuteration. At this temperature the amount of Li2ND (54%), LiD (31%), LiND₂ (10%) remained constant up to 65 h. Chen et al. [1] reported a rather rapid increase in hydride phase formation at 200 °C during de-hydriding, but we did not observe this behavior. We acknowledge that if we had raised the temperature by ~ 10 K; we probably would have observed the changes that Chen et al. [1] had reported. It can be noted that the amount of hydrogen desorbed increased rapidly for about 2 h or so at 320 °C which is perhaps what Chen et al. observed. Increasing the temperature to 320 °C rapidly increased the amount of Li₂ND (from 54% to 76%) and decreased the amount of LiD (from 31% to 20%). No LiND₂ phase was measurable after 68 h; perhaps the intensity of its Bragg peaks were too low for detection above the background level. The amount of the LiD phase decreased when the de-deuteriding temperature was increased to 320 and 350 °C, and the amount of the Li2ND phase increased as the temperature was increased during de-deuteriding. There is no LiND₂ phase observed upon de-deuteriding above 320 °C.

The changes in unit-cell volumes were measured at different temperatures during deuteration in equilibrated samples at different temperatures. In this experiment, the deuterated sample was heated to 250 °C, the sample holder was then sealed, and the supply of deuterium to the sample was shut off. The sample was then cooled down from 250 to 100 °C, and then reheated from 100 to 300 °C to measure the unit-cell volumes. The volume expansions as a function of temperatures of the α -Li₃N, LiD, and LiND₂ phases are shown in Fig. 5, and tabulated in the insert table. All these phases show an increase in unit-cell volumes, as expected. The Bragg peaks of the Li₂ND phase were not observed at these temperatures. The volume of the Li₃N phase increased from 44.59 to 45.2 Å³, the LiD phase from 67.76 to 69.58 Å³, and the LiND₂ phase from 260.79 to 266.85 Å³, from 100 to 300 °C, respectively.

4. Summary and conclusions

Neutron scattering studies of deuteration of α -Li₃N showed that the different amounts of LiD, and LiND₂, and Li₂ND phases form during isothermal heating at different temperatures. The total amount of hydrogen storage is calculated to be 7.26 wt.% during deuteriding at 250 °C. The stable LiD phase was found

to decrease slightly when the temperature is increased from 250 to $320 \,^{\circ}$ C during de-deuteriding.

Acknowledgements

We thank the U.S. Department of Energy for program support through the US DOE Metal Hydride Center of Excellence (MHCoE) at Sandia National Laboratories, Livermore, CA. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under contract DE-AC02-06CH11357.

References

- [1] P. Chen, Z. Xiong, J. Luo, J. Lin, K. Tan, Nature 21 (2002) 302-304.
- [2] W. Luo, J. Alloys Compd. 381 (2004) 284–287.
- [3] F.E. Pinkerton, J. Alloys Compd. 400 (2005) 76-82.
- [4] T. Ichikawa, N. Hanada, S. Isobe, H.Y. Leng, H. Fujii, J. Phys. Chem. B 108 (2004) 7887–7892.
- [5] L. Schlapbach, A. Züttel, Nature 414 (2001) 353.
- [6] D. Chandra, J. Petrovic, R.G. Bautista, A. Imam, Overview of the Advanced Materials for Energy Conversion – III, Symposium in Honor of Drs. Gary Sandrock, Louis Schlapbach, and Seijirau Suda For Lifetime Achievements in Metal Hydride Research and Development; D. Chandra, J. Petrovic, R. Bautista, A. Imam, Advanced Materials for Energy Conversion III, Proceeding of the TMS Annual Symposium in San Antonio, TX, TMS Press, vol. III, 383 pages, March 2006, pp. 3–7, ISBN: 978-0-87339-610-3.
- [7] D. Chandra, J.J. Reilly, R. Chellappa, J. Met. 58 (2006) 26–32.
- [8] A. Rabenau, H. Schulz, J. Less-Common Met. 50 (1976) 155-159.
- [9] D.H. Gregory, P.M. O'Meara, A.G. Gordon, J.P. Hodges, S. Short, J.D. Jorgensen, Chem. Mater. 14 (2002) 2063–2070.
- [10] H.J. Beister, S. Haag, R. Kniep, K. Strossner, K. Syassen, Angew. Chem. Int. Ed. Engl. 27 (8) (1988) 1101–1103.
- [11] A. Huq, J.W. Richardson, E.R. Maxey, D. Chandra, W. Chien, J. Alloys Compd. 436 (2007) 256–260.
- [12] W. Chien, D. Chandra, A. Huq, J.W. Richardson, E.R. Maxey, S. Fakra, M. Kunz, MS&T 2006: Fund. Charact. 1 (2006) 501–507.
- [13] T. Noritake, H. Nozaki, M. Aoki, S. Towata, G. Kitahara, Y. Nakamori, S. Orimo, J. Alloys Compd. 393 (2005) 264–268.
- [14] K. Ohoyama, Y. Nakamori, S. Orimo, K. Yamada, J. Phys. Soc. Jpn. 74 (1) (2005) 483–487.
- [15] M.P. Balogh, C.Y. Jones, J.F. Herbst, L.G. Hector Jr., M. Kundrat, J. Alloys Compd. 420 (2006) 326–336.
- [16] R. Juza, K. Opp, Z. Anorg. Allgem. Chem. 266 (1951) 313-324.
- [17] H. Jacobs, R. Juza, Z. Anorg. Allgem. Chem. 391 (3) (1972) 271-279.
- [18] K. Miwa, N. Ohba, S. Towata, Phys. Rev. B71 (2005) 195109-1.
- [19] J.B. Yang, X.D. Zhou, Q. Cai, W.J. James, W.B. Yelon, Appl. Phys. Lett. 88 (2006) 041914-1.
- [20] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2000).
- [21] B.H. Toby, J. Appl. Cryst. 34 (2001) 210-213.